Analisa Jaringan Saraf Tiruan Backpropagation Untuk Memprediksi Prestasi Siswa SMA Muhammadiyah Serbelawan

Aulia Ichwanda Ramadhan(1*), Jaya Tata Hardinata(2), Yuegilion Pranavarna Purba(3),

(1) STIKOM Tunas Bangsa, Pematangsiantar – Indonesia
(2) STIKOM Tunas Bangsa, Pematangsiantar – Indonesia
(3) STIKOM Tunas Bangsa, Pematangsiantar – Indonesia
(*) Corresponding Author

Abstract


Achievements achieved by graduates from an educational institution show the quality and quality. One of them is seen from one of the assessment criteria for assessing the achievement of graduates at the secondary school level, namely through the average score. This average value is often used as a measure to assess students who will enter the next level of education. In addition, the acceptance of students at a level of education is also adjusted to the capacity of the school in question. The high average score at the high school level does not guarantee student achievement at the tertiary level. So that this study aims to obtain an output architecture prediction of student achievement at SMA Muhammadiyah Serbelawan which correlates between the average value and the total score of class XII (twelve) high school students according to the data trained using Artificial Neural Network Analysis using the Backpropagation method. The data taken in the form of the average value of students and the total value of the second semester of class XII students. Furthermore, the data were analyzed using Backpropagation ANN method, with the help of MATLAB software. From the results of testing the Student Achievement data above, we can see in the 5-5-5-1 architecture which shows from the target minus the ANN output that SSE is 0.17625 which shows that there is a measuring tool in predicting the best students using academic value data as a target. From the data obtained, the computational performance of artificial neural networks with the Backpropagation Algorithm is 85%.

Full Text:

PDF

References


Andriyani, S., & Sihombing, N. (2018). Implementasi Metode Backpropagation Untuk Prediksi Harga Jual Kelapa Sawit Berdasarkan Kualitas Buah. Jurteksi, 4(2), 155–164. https://doi.org/10.33330/jurteksi.v4i2.40

Edi Ismanto, E. P. C. (2017). Jaringan Syaraf Tiruan Algoritma Backpropagation Dalam Memprediksi Ketersediaan Komoditi Pangan Provinsi Riau. Rabit : Jurnal Teknologi Dan Sistem Informasi Univrab, 2(2), 196–209. https://doi.org/10.36341/rabit.v2i2.152

Firdaus, R. (2015). SATIN – Sains dan Teknologi Informasi Jaringan Syaraf Tiruan untuk Memprediksi Prestasi Siswa Menggunakan Algoritma Backpropagation Firdaus. 2(1).

Guntoro, G., Costaner, L., & Lisnawita, L. (2019). Prediksi Jumlah Kendaraan di Provinsi Riau Menggunakan Metode Backpropagation. Informatika Mulawarman : Jurnal Ilmiah Ilmu Komputer, 14(1), 50. https://doi.org/10.30872/jim.v14i1.1745

Heriyanto, Y. (2018). Perancangan Sistem Informasi Rental Mobil Berbasis Web Pada PT.APM Rent Car. Jurnal Intra-Tech, 2(2), 64–77.

Lesnussa, Y. A., Latuconsina, S., & Persulessy, E. R. (2015). Aplikasi Jaringan Saraf Tiruan Backpropagation untuk Memprediksi Prestasi Siswa SMA (Studi kasus: Prediksi Prestasi Siswa SMAN 4 Ambon). Jurnal Matematika Integratif, 11(2), 149. https://doi.org/10.24198/jmi.v11i2.9427

Marbun, M., & Sinaga, B. (2018). Buku Ajar Sistem Pendukung Keputusan Penilaian Hasil Belajar | 1 STMIK Pelita Nusantara Medan (N. Siahaan & T. F. Manurung (eds.)).

Pramesti, D. F., Furqon, M. T., & Dewi, C. (2017). Implementasi Metode K-Medoids Clustering Untuk Pengelompokan Data Potensi Kebakaran Hutan / Lahan Berdasarkan Persebaran Titik Panas ( Hotspot ). Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputer, 1(9), 723–732.

Pratama, P. A. (2019). APLIKASI PENGELOLAHAN DATA INVENTORY PADA PT . PURNAM SARI MANDIRI PALEMBANG. Menejem Informatika Teknik Komputer.

Putri, D. A., Hananto, B., Afrizal, S., & Pangaribuan, A. B. (2019). Prediksi Program Studi Berdasarkan Nilai Siswa Dengan Algoritma Backpropagation ( Studi Kasus Sman 6 Depok Jurusan Ips ). 4221, 69–78.

Rometdo Muzawi, N. S. (2016). SATIN – Sains dan Teknologi Informasi Jaringan Syaraf Tiruan dengan Teknik Backpropagation untuk Prediksi. 2(2).

Simbolon, D. A., Hartama, D., & Anggraini, F. (2019). Penerapan Jaringan Saraf Tiruan Dalam Memprediksi Gizi Balita Pada Puskesmas Siantar Utara Kota Pematangsiantar. BRAHMANA: Jurnal Penerapan Kecerdasan Buatan, 1(1), 48–54. https://doi.org/10.30645/brahmana.v1i1.7

Solikhun, S., Safii, M., & Trisno, A. (2017). Jaringan Saraf Tiruan Untuk Memprediksi Tingkat Pemahaman Sisiwa Terhadap Matapelajaran Dengan Menggunakan Algoritma Backpropagation. J-SAKTI (Jurnal Sains Komputer Dan Informatika), 1(1), 24. https://doi.org/10.30645/j-sakti.v1i1.26

Wanto, A. (2018). Optimasi Prediksi Dengan Algoritma Backpropagation Dan Conjugate Gradient Beale-Powell Restarts. Jurnal Nasional Teknologi Dan Sistem Informasi, 3(3), 370–380. https://doi.org/10.25077/teknosi.v3i3.2017.370-380

Zola, F. (2018). Jaringan Syaraf Tiruan Menggunakan Algoritma Backpropagation Untuk Memprediksi Prestasi Siswa. Jurnal Teknologi Dan Open Source, 1(1), 58–72. https://doi.org/10.36378/jtos.v1i1.12




DOI: https://doi.org/10.30645/brahmana.v3i1.88

DOI (PDF): https://doi.org/10.30645/brahmana.v3i1.88.g88

Refbacks

  • There are currently no refbacks.


Published Papers Indexed/Abstracted By: