Teknik Data Mining Dalam Clustering Produksi Susu Segar Di Indonesia Dengan Algoritma K-Means

Ilham Safitra Damanik(1*), Sundari Retno Andani(2), Dedi Sehendro(3),

(1) Mahasiswa Program Studi Sistem Informasi, STIKOM Tunas Bangsa, Pematangsiantar
(2) AMIK Tunas Bangsa, Pematangsiantar, Indonesia
(3) AMIK Tunas Bangsa, Pematangsiantar, Indonesia
(*) Corresponding Author

Abstract


Milk is an important intake to meet nutritional needs. Both consumed by children, and adults. Indonesia has many producers of fresh milk, but it is not sufficient for national milk needs. Data mining is a science in the field of computers that is widely used in research. one of the data mining techniques is Clustering. Clustering is a method by grouping data. The Clustering method will be more optimal if you use a lot of data. Data to be used are provincial data in Indonesia from 2000 to 2017 obtained from the Central Statistics Agency. The results of this study are in Clusters based on 2 milk-producing groups, namely high-dairy producers and low-milk producing regions. From 27 data on fresh milk production in Indonesia, two high-level provinces can be obtained, namely: West Java and East Java. And 25 others were added in 7 provinces which did not follow the calculation of the K-Means Clustering Algorithm, including in the low level cluster.

Full Text:

PDF

References


Y. Darmi Dan A. Setiawan, “Penerapan Metode Clustering K-Means Dalam Pengelompokan Penjualan Produk,” J. Media Infotama, Vol. 12, No. 2, Hal. 148–157, 2016.

S. R. Ningsih, I. S. Damanik, A. P. Windarto, Dan H. Satria, “Analisis K-Medoids Dalam Pengelompokkan Penduduk Buta Huruf Menurut Provinsi,” Pros. Semin.Nas. Ris. Inf. Sci., No. September, Hal. 721–730, 2019.

W. Wardhani, Anindya Khrisna, “Implementasi Algoritma K-Means Untuk Pengelompokkan Penyakit Pasien Pada Puskesmas Kajen Pekalongan,” J.Transform., Vol. 14, No. 1, Hal. 30–37, 2016.

S. Sundari, I. S. Damanik, A. P. Windarto, Dan H. S. Tambunan, “Analisis KMedoids Clustering Dalam Pengelompokkan Data Imunisasi Campak Balita Di Indonesia,” Pros. Semin. Nas. Ris. Inf. Sci., No. September, Hal. 687–696, 2019.

B. Skripsi, M. Multimedia, P. Teknik, I. Dan, K. Universitas, Dan N. Jakarta,“Mplementasi Algoritma K-Means Clustering Untuk Mengetahui Bidang Skripsi Mahasiswa Multimedia Pendidikan Teknik Informatika Dan Komputer Universitas Negeri Jakarta,” No. December 2017, 2018.

M. G. Sadewo Et Al., “Penerapan Algoritma Clustering Dalam Mengelompokkan Banyaknya Desa / Kelurahan Menurut Upaya Antisipasi / Mitigasi Bencana Alam Menurut Provinsi Dengan K-Means,” Vol. 2, Hal. 311–319, 2018.

I. Parlina, A. P. Windarto, A. Wanto, Dan M. R. Lubis, “Memanfaatkan Algoritma K-Means Dalam Menentukan Pegawai Yang Layak Mengikuti Asessment Center Untuk Clustering Program Sdp,” Cess (Journal Comput. Eng. Syst. Sci., Vol. 3, No. 1, Hal. 87–93, 2018.

N. P. Eka Merliana, Ernawati, Dan A. J. Santoso, “Analisa Penentuan Jumlah Cluster Terbaik Pada Metode K-Means,” Hal. 978–979, 2015.




DOI: https://doi.org/10.30645/brahmana.v1i1.5

DOI (PDF): https://doi.org/10.30645/brahmana.v1i1.5.g5

Refbacks

  • There are currently no refbacks.


Published Papers Indexed/Abstracted By: