Penerapan Metode Single Moving Average Dalam Peramalan Persediaan Bahan Pangan

Kukuh Rizqi Liyadi(1*), Heny Pratiwi(2), Pitrasacha Aditya(3), Muhammad Ibnu Sa’ad(4),

(1) STMIK Widya Cipta Dharma, Samarinda, Indonesia
(2) STMIK Widya Cipta Dharma, Samarinda, Indonesia
(3) STMIK Widya Cipta Dharma, Samarinda, Indonesia
(4) STMIK Widya Cipta Dharma, Samarinda, Indonesia
(*) Corresponding Author

Abstract


Forecasting is a technique that is quite widely used today and has been developed since the 19th century. In line with the development of increasingly sophisticated forecasting techniques accompanied by developments in the use of computers. Forecasting can predict or estimate what will happen in the future using certain techniques so that forecasting has received increasing attention in recent years. Web-based applications are one of the systems that support the development of computer use, therefore in this study, researchers develop web-based applications for forecasting using the Single Moving Average method. In this study, forecasting was carried out using the Single Moving Average method to find out how much food is needed in the following month based on actual data from the previous months. Based on forecasting which was carried out using actual data from December 2021 to June 2022, the results obtained in the following month, namely July 2022, were 2,901 kg.

Full Text:

PDF

References


N. Z. Ramadhani, Z. Saidah, and R. S. Natawidjaja, “Analisis Persediaan Bahan Pangan pada sebuah Rumah Sakit di Kota Depok Analysis of Food Inventory in a Hospital at Depok City,” vol. 33, no. 1, pp. 78–82, 2022.

L. Mekar Tanjung and A. Fahmi, “Perhitungan Peramalan Pengadaan Obat Menggunakan Metode Single Exponential Smoothing Dan Single Moving Average Pada Unit Farmamin Dinas Kesehatan Provinsi Jawa Tengah Calculation of Procurement Forecasting Using Single Exponential Smoothing Method And Sin,” Joins, vol. 02, no. 02, pp. 234–243, 2017.

I. Asidik, Kusrini, and Henderi, “Decision Support System Model of Teacher Recruitment Using Algorithm C4.5 and Fuzzy Tahani,” J. Phys. Conf. Ser., vol. 1140, no. 1, 2018, doi: 10.1088/1742-6596/1140/1/012030.

K. Puspatika and Y. Kusumawati, “Peramalan harga cabai dengan metode ARIMA ARCH- GARCH dan Single Moving Average di Kota Semarang,” J. Inf. Syst., vol. 3, no. 2, pp. 192–201, 2018.

A. N. Putri and A. K. Wardhani, “Penerapan Metode Single Moving Average Untuk Peramalan Harga Cabai Rawit Hijau,” Indones. J. Technol. Informatics Sci., vol. 2, no. 1, pp. 37–40, 2020, doi: 10.24176/ijtis.v2i1.5653.

M. Alamsyah and R. Arnie, “Model Aplikasi Prediksi Penjualan Sepeda Motor Dengan Metode Single Moving Average,” Jutisi, pp. 779–788, 2016.

O. S. Bachri, “Forecasting Jumlah Perkara Perceraian Menggunakan Single Moving Average di Pengadilan Agama Sumber,” J. Ilm. Intech Inf. Technol. J. UMUS, vol. 1, no. 02, pp. 23–32, 2019, doi: 10.46772/intech.v1i02.67.

A. Apriliani, H. Zainuddin, A. Agussalim, and Z. Hasanuddin, “Peramalan Tren Penjualan Menu Restoran Menggunakan Metode Single Moving Average,” J. Teknol. Inf. dan Ilmu Komput., vol. 7, no. 6, p. 1161, 2020, doi: 10.25126/jtiik.2020722732.

M. Jumlah Sembuh Dan Meninggal Pada, “Penerapan Metode Single Moving Average Untuk,” vol. 3, 2020.

S. Kasus and C. V Perkakas, “Decision Support System Forecasting Penjualan Menggunakan Metode Simple Moving Average,” vol. 11, pp. 214–222, 2022.

H. Maros and S. Juniar, “済無No Title No Title No Title,” pp. 1–23, 2016.

P. M. Abdullah, Living in the world that is fit for habitation : CCI’s ecumenical and religious relationships. 2015.

I. Setiawan and N. Nasution, “Peramalan Penjualan Parfum Menggunakan Metode Single Moving Average (Sma) (Studi Kasus : Im Parfum Pekanbaru),” J. Sci. Soc. Res., vol. 5, no. 2, p. 339, 2022, doi: 10.54314/jssr.v5i2.934.

D. Susilawati, N. Setiawan, I. Yulianti, and D. Prayudi, “Penerapan Metode Single Moving Average untuk Prediksi Penjualan Pada Aby Manyu Cell,” Swabumi, vol. 6, no. 1, pp. 78–84, 2018, doi: 10.31294/swabumi.v6i1.3319.

R. Yudaruddin, Forecasting: Untuk Kegiatan Ekonomi Dan Bisnis. Samarinda, 2019. [Online]. Available: https://docplayer.info/140076878-Forecasting-untuk-kegiatan-ekonomi-dan-bisnis.html

O. I. Khalaf and G. M. Abdulsahib, “Frequency estimation by the method of minimum mean squared error and P-value distributed in the wireless sensor network,” J. Inf. Sci. Eng., vol. 35, no. 5, pp. 1099–1112, 2019, doi: 10.6688/JISE.201909_35(5).0010.

D. ShindyDwiyanti, “perbandingan mean squared error (mse) metode jackknife dan bootstrap pada pendugaan area kecil model logit-binomial.pdf.” p. 4, 2018.

A. Hajjah and Y. N. Marlim, “Analisis Error Terhadap Peramalan Data Penjualan,” Techno.Com, vol. 20, no. 1, pp. 1–9, 2021, doi: 10.33633/tc.v20i1.4054.

R. Gustriansyah, “Analisis Metode Single Exponential Smoothing Dengan Brown Exponential Smoothing Pada Studi Kasus Memprediksi Kuantiti Penjualan Produk Farmasidi Apotek,” Semin. Nas. Teknol. Inf. dan Multimed. 2017, vol. 3, no. February, pp. 5–12, 2017, [Online]. Available: https://ojs.amikom.ac.id/index.php/semnasteknomedia/article/view/1653

T. Chai and R. R. Draxler, “Root mean square error (RMSE) or mean absolute error (MAE)? -Arguments against avoiding RMSE in the literature,” Geosci. Model Dev., vol. 7, no. 3, pp. 1247–1250, 2014, doi: 10.5194/gmd-7-1247-2014.




DOI: https://doi.org/10.30645/brahmana.v4i1.136

DOI (PDF): https://doi.org/10.30645/brahmana.v4i1.136.g135

Refbacks

  • There are currently no refbacks.


Published Papers Indexed/Abstracted By: