Analisis Data Mining Pesebaran Siswa Smp Di Pematangsiantar Dengan Metode Algoritma K-Means Clustering

Kurnia Sandi Purba(1*), Dedy Hartama(2), S Suhada(3),

(1) STIKOM Tunas Bangsa, Pematangsiantar
(2) STIKOM Tunas Bangsa, Pematangsiantar
(3) AMIK Tunas Bangsa, Pematangsiantar
(*) Corresponding Author

Abstract


Data Mining is an automatic analysis of large or complex data with the aim of finding important patterns or trends that are usually not realized. However, the student data has not been utilized optimally, making it difficult for the school to carry out student development at school. Each student will make a comparison between the desired service with the service received. The K-Means algorithm is an iterative cluster technique algorithm. This algorithm starts with random selection, which is the number of clusters that you want to form. The attributes needed in processing are the student's hometown, the student's school origin, and the student's grade. Based on these attributes, the data will then be grouped into junior high school students based on city origin, school origin, and student grades using the K-Means Clustering algorithm. The results of processing this data will greatly help the junior high school, so that it is known that the distribution of each junior high school student is the most. In this study, the data used were data from junior high school students from the 2018-2019 class in Pematangsiantar as many as 300 data samples

Full Text:

PDF

References


Y. P. Sari, A. Primajaya, And A. S. Y. Irawan, “Implementasi Algoritma K-Means Untuk Clustering Penyebaran Tuberkulosis Di Kabupaten Karawang,” Inovtek Polbeng - Seri Inform., Vol. 5, No. 2, P. 229, 2020, Doi: 10.35314/Isi.V5i2.1457.

T. I. Hermanto And Y. Muhyidin, “Analisis Sebaran Titik Rawan Bencana Dengan K-Means Clustering Dalam Penanganan Bencana,” J-Sakti (Jurnal Sains Komput. Dan Inform., Vol. 5, Pp. 406–416, 2021, [Online]. Available: Http://Ejurnal.Tunasbangsa.Ac.Id/Index.Php/Jsakti/Article/View/332.

N. Butarbutar, A. P. Windarto, D. Hartama, And Solikhun, “Komparasi Kinerja Algoritma Fuzzy C-Means Dan K-Means Dalam Pengelompokan Data Siswa Berdasarkan Prestasi Nilaiakademik Siswa,” Jurasik (Jurnal Ris. Sist. Inf. Tek. Inform., Vol. 1, No. 2012, 2016.

S. R. S. Iskandar, Pilipus Tarigan, “Penerapan Data Mining Dalam Surat Jalan Transportasi Mobil Angkutan Menggunakan Metode Cluestering,” J. Pelita Inform., Vol. 17, No. 4, Pp. 460–464, 2018.

N. R. W, S. Defiyanti, And M. Jajuli, “Implementasi Algoritma K-Means Dalam Pengklasteran Mahasiswa Pelamar Beasiswa Nurul,” J. Ilm. Teknol. Inf. Terap., Vol. I, No. 2, Pp. 62–68, 2015.

M. G. Sadewo, A. P. Windarto, And S. R. Andani, “Pemanfaatan Algoritma Clushtering Dalam Mengelompokkan Jumlah Desa / Kelurahan Yang Memiliki Sarana Kesehatan,” Vol. I, Pp. 124–131, 2017.

E. Muningsih And S. Kiswati, “Penerapan Metode K-Means Untuk Clustering Produk Online Shop Dalam Penentuan Stok Barang,” Elly Muningsih1 Dan Sri Kiswati2, Vol. 3, No. 1, 2015.

B. R. C.T.I. Et Al., “Implemetasi K-Means Clustering Pada Rapidminer Untuk Analisis Daerah Rawan Kecelakaan,” Semin. Nas. Ris. Kuantitatif Terap. 2017, No. April, Pp. 58–60, 2017.

I. Parlina, A. P. Windarto, A. Wanto, And M. R. Lubis, “Memanfaatkan Algoritma K-Means Dalam Menentukan Pegawai Yang Layak Mengikuti Asessment Center Untuk Clustering Program Sdp,” Cess (Journal Comput. Eng. Syst. Sci., Vol. 3, No. 1, Pp. 87–93, 2018.




DOI: https://doi.org/10.30645/kesatria.v3i1.91

DOI (PDF): https://doi.org/10.30645/kesatria.v3i1.91.g91

Refbacks

  • There are currently no refbacks.


Published Papers Indexed/Abstracted By: