Implementasi Algoritma Backpropagation Dalam Memprediksi Harga Bahan Pangan

Deni Saputra(1*), M Safii(2), M Fauzan(3),

(1) STIKOM Tunas Bangsa, Pematangsiantar, Medan, Indonesia
(2) AMIK Tunas Bangsa, Pematangsiantar, Medan, Indonesia
(3) STIKOM Tunas Bangsa, Pematangsiantar, Medan, Indonesia
(*) Corresponding Author

Abstract


Foodstuffs are raw materials in the form of agricultural, vegetable, and animal products used by the food processing industry to produce a food product. Prices of foodstuffs sometimes rise and fall erratically. The purpose of this research is to predict the price of foodstuffs by using the Backpropagation algorithm. The data used in this study is food price data from 2016 to 2019, originating from the Pusat Informasi Harga Pangan Statistics (PIHPS). This research uses the neural network method of the Backpropagation algorithm, which uses several architectural models, and the results of this test will yield the best accuracy value.

Full Text:

PDF

References


A. P. Windarto, L. S. Dewi, and D. Hartama, “Implementation of Artificial Intelligence in Predicting the Value of Indonesian Oil and Gas Exports With BP Algorithm,” Int. J. Recent Trends Eng. Res., vol. 3, no. 10, pp. 1–12, 2017, doi: 10.23883/IJRTER.2017.3482.J5BBS.

Sumijan, A. P. Windarto, A. Muhammad, and Budiharjo, “Implementation of Neural Networks in Predicting the Understanding Level of Students Subject,” Int. J. Softw. Eng. Its Appl., vol. 10, no. 10, pp. 189–204, 2016.

A. Wanto and A. P. Windarto, “Analisis Prediksi Indeks Harga Konsumen Berdasarkan Kelompok Kesehatan Dengan Menggunakan Metode Backpropagation,” J. Penelit. Tek. Inform., vol. 2, no. 2, pp. 37–44, 2017.

Budiharjo, T. Soemartono, A. P. Windarto, and T. Herawan, “Predicting School Participation in Indonesia using Back-Propagation Algorithm Model,” Int. J. Control Autom., vol. 11, no. 11, pp. 57–68, 2018.

A. A. Fardhani, D. I. N. Simanjuntak, and A. Wanto, “Prediksi Harga Eceran Beras Di Pasar Tradisional Di 33 Kota Di Indonesia Menggunakan Algoritma Backpropagation,” J. Infomedia, vol. 3, no. 1, 2018, doi: 10.30811/jim.v3i1.625.

H. Pratiwi et al., “Sigmoid Activation Function in Selecting the Best Model of Artificial Neural Networks,” J. Phys. Conf. Ser., vol. 1471, no. 1, 2020, doi: 10.1088/1742-6596/1471/1/012010.

A. P. Windarto, M. R. Lubis, and Solikhun, “Implementasi JST Pada Prediksi Total Laba Rugi Komprehensif Bank Umum Konvensional Dengan Backpropagation,” J. Teknol. Inf. dan Ilmu Komput., vol. 5, no. 4, pp. 411–418, 2018, doi: 10.25126/jtiik.201854767.

A. R. Youllia Indrawaty, Asep Nana Hermana, “Implementasi Model Backpropagation Dalam Mengenali Pola Gambar Untuk Mendiagnose Penyakit Kulit,” J. Inform., vol. 3, no. 1, pp. 1–7, 2012.

A. P. Windarto, “Implementasi Jst Dalam Menentukan Kelayakan Nasabah Pinjaman Kur Pada Bank Mandiri Mikro Serbelawan Dengan Metode Backpropogation,” J-SAKTI (Jurnal Sains Komput. dan Inform., vol. 1, no. 1, pp. 12–23, 2017.




DOI: https://doi.org/10.30645/kesatria.v1i4.37

DOI (PDF): https://doi.org/10.30645/kesatria.v1i4.37.g37

Refbacks

  • There are currently no refbacks.


Published Papers Indexed/Abstracted By: