Penggunaan Datamining Untuk Memprediksi Masa Studi Mahasiswa di Universitas Muhammadiyah Sidoarjo Dengan Algoritma Naive Bayes

Muhammad Mursidil Arif(1*), Hamzah Setiawan(2), Arif Senja Fitrani(3),

(1) Universitas Muhammadiyah Sidoarjo, Sidoarjo, Indonesia
(2) Universitas Muhammadiyah Sidoarjo, Sidoarjo, Indonesia
(3) Universitas Muhammadiyah Sidoarjo, Sidoarjo, Indonesia
(*) Corresponding Author

Abstract


In the higher education, improving student performance and improving the quality of education is very important. The education system requires innovative ways to improve the quality of education, achieve the best results and minimize student failure rates. One of the innovative ways is to apply data mining to predict students' study period. The results of these predictions will help students or academic adviser to provide early warning or give more precise directions to each student, so that they can do the best things to increase the chances of graduating on time. In this study, 9 academic and non-academic variables were used, consisting of semester grade point index, Semesters 1, 2, 3 and 4, GPA, school origin (public/private), finance (constrained by financial problems or not), scholarship (whether get a scholarship or not), Student Affairs (active or not in the student program). The use of academic and non-academic data variables in this study aims to broaden the predictions of student graduation which are not only assessed from an academic point of view, but also look at non-academic factors. The data used is student’s data for the 2017-2018 Informatics study program at the Muhammadiyah University of Sidoarjo. This data is obtained from the Directorate of Information Systems & Technology (DSTI) Muhammadiyah University of Sidoarjo as many as 200 data. Modelling using the naïve Bayes algorithm using Anaconda Navigator software with IDLE Jupyter Notebook and the Python programming language, after evaluation using the confusion matrix and accuracy score, the results obtained were 68% accuracy, precision value 0.67, recall 0.77 and f1-score 0.72. while the accuracy score evaluation value gets 67.35%

Full Text:

PDF

References


I. W. Saputro Dan B. W. Sari, “Uji Performa Algoritma Naïve Bayes Untuk Prediksi Masa Studi Mahasiswa,” Creative Information Technology Journal, Vol. 6, No. 1, Hal. 1, 2020, Doi: 10.24076/Citec.2019v6i1.178.

A. Ashraf, S. Anwer, Dan M. Gufran, “A Comparative Study Of Predicting Student ’ S Performance By Use Of Data Mining Techniques,” American Scientific Research Journal For Engineering, Technology, And Sciences (Asrjets), Vol. 44, No. 1, Hal. 122–136, 2018.

A A Saputro Dan R. Helilintar, “Perancangan Prediksi Prestasi Nilai Akademik Mahasiswa Menggunakan Metode K-Means Clustering,” Prosiding Semnas Inotek …. 2020.

E. Sutoyo Dan A. Almaarif, “Educational Data Mining Untuk Prediksi Kelulusan Mahasiswa Menggunakan Algoritme Naïve Bayes Classifier,” Jurnal Resti (Rekayasa Sistem Dan Teknologi Informasi), Vol. 4, No. 1, Hal. 95–101, 2020.

L. Setiyani, M. Wahidin, D. Awaludin, Dan S. Purwani, “Analisis Prediksi Kelulusan Mahasiswa Tepat Waktu Menggunakan Metode Data Mining Naïve Bayes : Systematic Review,” Faktor Exacta, Vol. 13, No. 1, Hal. 35, 2020, Doi: 10.30998/Faktorexacta.V13i1.5548.

M. W. Amelia, A. S. M. Lumenta, Dan A. Jacobus, “Prediksi Masa Studi Mahasiswa Dengan Menggunakan Algoritma Naïve Bayes,” E-Journal Teknik Informatika, Vol. 11, No. 1, 2017.

S. Widaningsih, “Perbandingan Metode Data Mining Untuk Prediksi Nilai Dan Waktu Kelulusan Mahasiswa Prodi Teknik Informatika Dengan Algoritma C4,5, Naïve Bayes, Knn Dan Svm,” Jurnal Tekno Insentif, Vol. 13, No. 1, Hal. 16–25, 2019, Doi: 10.36787/Jti.V13i1.78.

M. Windarti Dan A. Suranadi, “Perbandingan Kinerja 6 Algoritme Klasifikasi Data Mining Untuk Prediksi Masa Studi Mahasiswa,” Jurnal Telematika, Vol. 1, No. 1, Hal. 14–30, 2019.

H. A. Mengash, “Using Data Mining Techniques To Predict Student Performance To Support Decision Making In University Admission Systems,” Ieee Access, Vol. 8, Hal. 55462–55470, 2020, Doi: 10.1109/Access.2020.2981905.

M. R. Qisthiano, T. B. Kurniawan, E. S. Negara, Dan M. Akbar, “Pengembangan Model Untuk Prediksi Tingkat Kelulusan Mahasiswa Tepat Waktu Dengan Metode Naïve Bayes,” Jurnal Media Informatika Budidarma, Vol. 5, No. 3, Hal. 987, 2021, Doi: 10.30865/Mib.V5i3.3030.

A. Luque, A. Carrasco, A. Martín, Dan A. De Las Heras, “The Impact Of Class Imbalance In Classification Performance Metrics Based On The Binary Confusion Matrix,” Pattern Recognition, Vol. 91, Hal. 216–231, 2019, Doi: 10.1016/J.Patcog.2019.02.023.

M. K. Sophan, A. Kurniawati, T. Informatika, Dan U. T. Madura, “Perancangan Aplikasi Learning By Doing Interaktif Untuk Design Of Interactive Applications " Learning By Doing " To Support,” Vol. 5, No. 2, Hal. 163–170, 2018, Doi: 10.25126/Jtiik.




DOI: https://doi.org/10.30645/kesatria.v4i3.210

DOI (PDF): https://doi.org/10.30645/kesatria.v4i3.210.g209

Refbacks

  • There are currently no refbacks.


Published Papers Indexed/Abstracted By: