Analisis Pemetaan Tingkat Kehadiran Siswa Dengan Metode K-Means Clastering

Dudih Gustian(1*), M. Yosef Ismatulloh(2),

(1) Universitas Nusa Putra, Sukabumi, Jawa Barat, Indonesia
(2) Universitas Nusa Putra, Sukabumi, Jawa Barat, Indonesia
(*) Corresponding Author

Abstract


The development of education is needed, among other things, to build the character of quality Human Resources (HR). School is one of the institutions that is responsible for the formation of character, especially the character of student discipline. Absence is a data collection activity to determine the number of attendees. Skipping an activity because students get bored while studying. Skipping school can have a negative impact on self and student achievement. At SMK Negeri 1 Surade there were fluctuations in attendance with various factors, out of 27 students there were 14 students with an attendance rate of 100%, and the ratio of all students was 51%. The benefit of this research is that it can encourage students to attend class. Meanwhile, schools can monitor easily and offer several alternative solutions for students with current problems. At the same time, parents can help monitor their child's learning process. By using the k-means clustering method, clustering can be made according to the results of the questionnaire. It is known that individual and internal class factor parameters require special attention, but in general students are still in the moderate category. After calculating from a number of 27 students, the first cluster consisted of 10 students (37%), the second cluster consisted of 16 students (59.3%) and the third cluster consisted of 1 person (3.7%)

Full Text:

PDF

References


H. Santoso dan A. Wilda Yulianto, “Analisa Dan Perancangan Sistem Absensi Siswa Berbasis Web Dan Sms Gateway,” Jurnal MATRIK, vol. 16, no. 2, hlm. 65–75, 2017, doi: https://doi.org/10.30812/matrik.v16i2.11.

R. Anzalena, S. Yusuf, dan Lukman, “Faktor Penyebab Indisipliner Siswa dalam Mematuhi Tata Tertib di Sekolah Dasar,” Jurnal Pendidikan Guru Sekolah Dasar, vol. 12, no. 2, hlm. 123–132, 2019, doi: https://doi.org/10.33369/pgsd.12.2.123-132.

N. Rubiati dan S. Widya Harahap, “Aplikasi Absensi Siswa Menggunakan Qr Code Dengan Bahasa Pemrograman Php Di Smkit Zunurain Aqila Zahra Di Pelintung,” Jurnal Informatika, Manajemen dan Komputer, vol. 11, no. 1, hlm. 62–70, 2019, doi: http://dx.doi.org/10.36723/juri.v11i1.141.

D. Permata Sari, F. Sembiring, D. Putri Sulisdianto, dan E. Suratno, “Implementasi Algoritma Fuzzy C-Means Untuk Memprediksi Faktor Siswa Membolos,” Restikom, vol. 2, no. 1, hlm. 1–7, Apr 2020, doi: https://doi.org/10.52005/restikom.v2i1.61.

A. Rohman dan A. Rufiyanto, “Implementasi Data Mining Dengan Algoritma Decision Tree C4.5 Untuk Prediksi Kelulusan Mahasiswa Di Universitas Pandanaran,” dalam SINTAK, 2019, hlm. 134–139.

A. A. Argasah dan D. Gustian, “Data Mining Analysis To Determine Employee Salaries According To Needs Based On The K-Medoids Clastering Algorithm,” Jurnal Teknik Informatika (JUTIF), vol. 3, no. 1, hlm. 29–36, 2022, doi: 10.20884/1.jutif.2022.3.1.154.

T. Syahputra, J. Halim, dan E. Sintho Promo, “Penerapan Data Mining Dalam Menentukan Pilihan Jurusan Bidang Studi Sma Menggunakan Metode Clastering Dengan Teknik Single Linkage,” JURTEKSI (Jurnal Teknologi dan Sistem Informasi), vol. IV, no. 2, hlm. 205–208, 2018, doi: 10.33330/jurteksi.v4i2.61.

I. Virgo, S. Defit, dan Y. Yunus, “Klasterisasi Tingkat Kehadiran Dosen Menggunakan Algoritma K-Means Clastering,” Jurnal Sistim Informasi dan Teknologi, vol. 2, no. 1, hlm. 23–28, Mar 2020, doi: 10.37034/jsisfotek.v2i1.17.

A. Rohman dan S. Mujiyono, “Analisis Data Mining Menggunakan Algoritma K-Means Clastering Untuk Menentukan Keaktifan Peserta Pelatihan Pembuatan Dokumen Ilmiah Secara Daring,” Jurnal Prodi Teknik Informatika UNW “Multimatrix,” vol. II, no. 2, hlm. 32–35, 2020.

F. Pramataning Dewi, P. Siwi Aryni, dan Y. Umaidah, “Implementasi Algoritma K-Means Clastering Seleksi Siswa Berprestasi Berdasarkan Keaktifan dalam Proses Pembelajaran,” Jurnal Informatika Sunan Kalijaga), vol. 7, no. 2, hlm. 111–121, 2022, doi: https://doi.org/10.14421/jiska.2022.7.2.111-121.

A. E. Pramitasari dan Y. Nataliani, “Perbandingan Clastering Karyawan Berdasarkan Nilai Kinerja Dengan Algoritma K-Means Dan Fuzzy C-Means,” Jurnal Teknik Informatika dan Sistem Informasi, vol. 8, no. 3, hlm. 1119–1132, 2021, doi: https://doi.org/10.35957/jatisi.v8i3.957.

I. Kamila, U. Khairunnisa, dan Mustakim, “Perbandingan Algoritma K-Means dan K-Medoids untuk Pengelompokan,” Jurnal Ilmiah Rekayasa dan Manajemen Sistem Informasi, vol. 5, no. 1, hlm. 119–125, 2019, doi: http://dx.doi.org/10.24014/rmsi.v5i1.7381.

A. Supriyadi, A. Triayudi, dan I. D. Sholihati, “Perbandingan Algoritma K-Means Dengan K-Medoids Pada Pengelompokan Armada Kendaraan Truk Berdasarkan Produktivitas,” JIPI (Jurnal Ilmiah Penelitian dan Pembelajaran Informatika), vol. 06, no. 02, hlm. 229–240, 2021, doi: https://doi.org/10.29100/jipi.v6i2.2008.

N. I. Febianto dan N. Palasara, “Analisa Clastering K-Means Pada Data Informasi Kemiskinan Di Jawa Barat Tahun 2018,” Jurnal Sisfokom (Sistem Informasi dan Komputer), vol. 8, no. 2, hlm. 130–140, Agu 2019, doi: 10.32736/sisfokom.v8i2.653




DOI: https://doi.org/10.30645/kesatria.v4i1.120

DOI (PDF): https://doi.org/10.30645/kesatria.v4i1.120.g114

Refbacks

  • There are currently no refbacks.


Published Papers Indexed/Abstracted By: