Analisis Metode K-Medoids Pada Penjualan Produk Smartphone Vivo Di Kota Pematangsiantar

Mita Yustika(1*), Agus Perdana Windarto(2), Yuegilion Pranavarna Purba(3),

(1) STIKOM Tunas Bangsa, Pematangsiantar – Indonesia
(2) STIKOM Tunas Bangsa, Pematangsiantar – Indonesia
(3) STIKOM Tunas Bangsa, Pematangsiantar – Indonesia
(*) Corresponding Author

Abstract


Globalization is a very promising era of openness and freedom, where a communication which is a means to obtain information is expected to be carried out easily and effectively. One of the communication media in question is a cellphone. The users of cellphones or cellphones used to be limited to the elite, but for now it has begun to penetrate various circles of society ranging from students, university students, civil servants and even ordinary people who have used it... K-Medoids Clustering is one of the one technique of one of the data mining functionality, the clustering algorithm is an algorithm for grouping a number of data into certain data groups (clusters). While data mining, often referred to as Knowledge Discovery In Database (KDD) is an activity that includes the collection, use of historical data to find regularities, patterns or relationships in large data sets aimed at finding out the Vivo Smartphone brand that is selling well in the market so that it can be done. early procurement. From this study, it was found that Vivo smartphones with the brand S1 Pro 8+128, V17 Pro, V19 8+128GB, V19 8+256GB, Y11 2+32GB, Y12 3+64GB, Y17 4+128GB, Y19 6+128GB are brands which sold a lot. With the results obtained can provide information to PT. Vivo is improving its service even better by increasing the stock of Vivo smartphones which are in great demand, especially in the city of Pematangsiantar

Full Text:

PDF

References


Defiyanti, S., Jajuli, M., & W, N. rohmawati. (2017). Optimalisasi K - Medoid Dalam Pengklasteran Mahasiswa Pelamar Beasiswa Dengan Cubic Clustering Criterion. TEKNOSI, 03(01), 211–218.

Lambertus, S. (2018). Optimasi Kinerja Firewall Menggunakan Teknik Data Mining.

Pangan T. (2015). Analisis Pengelompokan Daerah Menggunakan Metode Non-Hierarchical Partitioning K-Medoids Dari Hasil Komoditas Pertanian Tanaman Pangan (Studi Kasus Kabupaten/Kota Se-Jawa Tengah Tahun 2009 €“ 2013). None, 4(4), 825–836.

F., Furqon, M. T., & Dewi, C. (2017). Implementasi Metode K-Medoids Clustering Untuk Pengelompokan Data Potensi Kebakaran Hutan / Lahan Berdasarkan Persebaran Titik Panas ( Hotspot ). Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputer, 1(9), 723–732.

Pulungan, N., Suhada, S., & Suhendro, D. (2019). Penerapan Algoritma K-Medoids Untuk Mengelompokkan Penduduk 15 Tahun Keatas Menurut Lapangan Pekerjaan Utama. KOMIK (Konferensi Nasional Teknologi Informasi Dan Komputer), 3(1), 329–334. https://doi.org/10.30865/komik.v3i1.1609

Riyanto, B. (2019). Penerapan Algoritma K-Medoids Clustering Untuk Pengelompokkan Penyebaran Diare Di Kota Medan (Studi Kasus: Kantor Dinas Kesehatan Kota Medan). KOMIK (Konferensi Nasional Teknologi Informasi Dan Komputer), 3(1), 562–568. https://doi.org/10.30865/komik.v3i1.1659

Ropianto, M. (2016). Pemahaman Penggunaan Unified Modelling Language. Jt-Ibsi, 1(1), 43–50.

Silitonga, D. A., Windarto, A. P., & Hartama, D. (2019). Penerapan Metode K-Medoid pada Pengelompokan Rumah Tangga Dalam Perlakuan Memilah Sampah Menurut Provinsi. Seminar Nasional Sains & Teknologi Informasi (SENSASI) SENSASI 2019 ISBN:, 313–318.

Sindi, S., Ratnasari, W., Ningse, O., Sihombing, I. A., Zer, F. I. R. H., Hartama, D., & Kunci, K. (2020). Analisis algoritma k-medoids clustering dalam pengelompokan penyebaran covid-19 di indonesia. 4(1), 166–173.

Tanjung, Q. (2017). Sistem Penunjang Keputusan Kelayakan Kredit Motor Menggunakan Metode Naive Bayes Pada NSC Finance Cikampek.

Urva, G., & Siregar, H. F. (2015). Pemodelan UML E-Marketing Minyak Goreng. JTSI, 1(9), 92–101.

Wira, B., Budianto, A. E., & Wiguna, A. S. (2019). Implementasi Metode K-Medoids Clustering untuk Mengetahui Pola Pemilihan Program Studi. Jurnal Terapan Sains & Teknologi, 1(3), 54–69.

Yudistira, P. (2019). Jurnal selulosa. 9(1).

Yusuf, M., Danuri, D., & Jaroji, J. (2019). Aplikasi Penjualan Tiket Ro-Ro Bengkalis Berbasis Android. INOVTEK Polbeng - Seri Informatika, 4(2), 201. https://doi.org/10.35314/isi.v4i2.1077




DOI: https://doi.org/10.30645/brahmana.v3i1.89

DOI (PDF): https://doi.org/10.30645/brahmana.v3i1.89.g89

Refbacks

  • There are currently no refbacks.


Published Papers Indexed/Abstracted By: