Penerapan Metode K-Means Dalam Mengelompokkan Banyaknya Desa/ Kelurahan Menurut Keberadaan Permukiman Di Bantaran Sungai Berdasarkan Provinsi

Indah Pratiwi M.S(1*), Agus Perdana Windarto(2), Irfan Sudahri Damanik(3),

(1) STIKOM Tunas Bangsa, Pematangsiantar, Sumatera Utara, Indonesia
(2) STIKOM Tunas Bangsa, Pematangsiantar, Sumatera Utara, Indonesia
(3) STIKOM Tunas Bangsa, Pematangsiantar, Sumatera Utara, Indonesia
(*) Corresponding Author

Abstract


The research aims to classify the settlements along the river banks by province. To solve this problem, the researchers applied the K-Means Algorithm method. Where the source of research data was collected based on documents explaining the number of villages / sub-districts according to the existence of settlements on the river banks produced by the Central Statistics Agency (BPS). The data used in the study are data from 2014 - 2018 which consists of 34 provinces. The data will be processed by clustering in 2 clusters, namely the settlement level cluster on the high riverbank and the settlement level cluster on the low riverbank. The high cluster consists of 11 data, namely the provinces of Aceh, North Sumatra, Jambi, South Sumatra, West Java, Central Java, East Java, West Kalimantan, Central Kalimantan, South Kalimantan, and South Sulawesi. By conducting the research, it can provide input and as a solution to related parties in charge of dealing with settlement problems along the river banks, especially for the government, in order to get more attention in provinces with high riverbank settlement rates.

Full Text:

PDF

References


B. T. Cesarin And C. Ginting, “Persepsi Masyarakat Terhadap Permukiman Bantaran Sungai,” No. 1, Pp. 117–122, 2015.

R. W. Sari, A. Wanto, And A. P. Windarto, “Implementasi Rapidminer Dengan Metode K-Means ( Study Kasus : Imunisasi Campak Pada Balita Berdasarkan Provinsi ),” Vol. 2, Pp. 224–230, 2018.

R. A. Margolang, S. R. Andani, And M. R. Lubis, “Implementasi Data Mining Dalam Mengelompokkan Rumah Tangga Kumuh Di Perkotaan Berdasarkan Provinsi Menggunakan,” No. September, Pp. 602–609, 2019.

M. G. Sadewo, A. P. Windarto, And S. R. Andani, “Pemanfaatan Algoritma Clushtering Dalam Mengelompokkan Jumlah Desa / Kelurahan Yang Memiliki Sarana Kesehatan,” Vol. I, Pp. 124–131, 2017.

K. Fatmawati And A. P. Windarto, “Data Mining : Penerapan Rapidminer Dengan K-Means Cluster Pada Daerah Terjangkit Demam Berdarah Dengue ( Dbd ) Berdasarkan Provinsi,” Vol. 3, No. 2, Pp. 173–178, 2018.

N. Putu, E. Merliana, P. Studi, M. Teknik, F. T. Industri, And U. A. Jaya, “Analisa Penentuan Jumlah Cluster Terbaik Pada Metode K-Means,” Pp. 978–979.

N. V. Waworuntu And M. F. Amin, “Penerapan Metode K-Means Pemetaan Calon,” Vol. 05, No. 02, Pp. 190–200, 2018.




DOI: https://doi.org/10.30645/brahmana.v2i1.48

DOI (PDF): https://doi.org/10.30645/brahmana.v2i1.48.g48

Refbacks

  • There are currently no refbacks.


Published Papers Indexed/Abstracted By: