Implementasi Algoritma K-Medoids dan Aplikasi RapidMiner dalam Pengelompokkan Kasus BALITA Stunting

Dian Permata Sari(1*),

(1) STMIK Jayanusa, Indonesia
(*) Corresponding Author

Abstract


Stunting is a condition where a child's growth is disrupted, one of which is characterized by the child's growth being abnormally tall, so that it is lower than children his age. Genetic factors have a very small influence on stunting cases compared to environmental factors and health services. In the Tarab River area itself, the biggest factors causing stunting in children are poor nutrition, economics and latrines. In this study the author tried to group stunting cases in the Sungai Tarab II community health center using the k-medoids method, the variables used were age, economic status, latrine conditions and complete or incomplete immunization. The results of research using the k-medoids method which carried out manual calculations obtained 2 clusters, namely cluster 1 and cluster 2 and the results could be obtained in iteration 1 where the difference was 1.112854. As for cluster 1, children are categorized as not being in the stunting category, while cluster 2 children are categorized as stunting.

Full Text:

PDF

References


Y. Yuwanti, F. M. Mulyaningrum, and M. M. Susanti, “Faktor – Faktor Yang Mempengaruhi Stunting Pada Balita Di Kabupaten Grobogan,” J. Keperawatan dan Kesehat. Masy. Cendekia Utama, vol. 10, no. 1, p. 74, 2021, doi: 10.31596/jcu.v10i1.704.

R. R. R. Arisandi, B. Warsito, and A. R. Hakim, “Aplikasi Naïve Bayes Classifier (Nbc) Pada Klasifikasi Status Gizi Balita Stunting Dengan Pengujian K-Fold Cross Validation,” J. Gaussian, vol. 11, no. 1, pp. 130–139, 2022, doi: 10.14710/j.gauss.v11i1.33991.

S. Narulita, P. Prihati, A. T. Oktaga, and ..., “Performansi Algoritma Clustering K-Means untuk Penentuan Status Malnutrisi pada Balita,” J. Informasi, Sains …, vol. 06, no. 1, 2023, [Online]. Available: https://isaintek.polinef.ac.id/index.php/isaintek/article/view/128%0Ahttps://isaintek.polinef.ac.id/index.php/isaintek/article/download/128/124

A. Fadilah, M. N. Pangestu, S. Lumbanbatu, and S. Defiyanti, “Pengelompokan Kabupaten/Kota Di Indonesia Berdasarkan Faktor Penyebab Stunting Pada Balita Menggunakan Algoritma K-Means,” JIKO (Jurnal Inform. dan Komputer), vol. 6, no. 2, p. 223, 2022, doi: 10.26798/jiko.v6i2.581.

I. Puspita, M. N. Hayati, A. Nohe, L. S. Terapan, and U. Mulawarman, “Pengelompokan Puskesmas Berdasarkan Kasus Balita Stunting di Kabupaten Paser Menggunakan Metode K-medoids Grouping Community Health Centers Based on Stunting Toddler Cases in Paser Regency Using the K-medoids Method,” vol. 14, pp. 1–10, 2023.

F. Alfiah, A. Almadayani, D. Al Farizi, and E. Widodo, “Analisis Clustering K-Medoids Berdasarkan Indikator Kemiskinan di Jawa Timur Tahun 2020,” J. Ilm. Sains, vol. 22, no. 1, p. 1, 2021, doi: 10.35799/jis.v22i1.35911.

H. Pohan, M. Zarlis, E. Irawan, H. Okprana, and Y. Pranayama, “Penerapan Algoritma K-Medoids dalam Pengelompokan Balita Stunting di Indonesia,” JUKI J. Komput. dan Inform., vol. 3, no. 2, pp. 97–104, 2021, doi: 10.53842/juki.v3i2.69.

Novita Lestari Anggreini, “Teknik Clustering Dengan Algoritma K-Medoids Untuk Menangani Strategi Promosi Di Politeknik Tedc Bandung,” J. Teknol. Inf. dan Pendidik., vol. 12, no. 2, pp. 1–7, 2019, [Online]. Available: http://tip.ppj.unp.ac.id

D. A. Alodia, A. P. Fialine, D. Endriani, and E. Widodo, “Implementasi Metode K-Medoids Clustering untuk Pengelompokan Provinsi di Indonesia Berdasarkan Indikator Pendidikan,” Sepren, vol. 2, no. 2, pp. 1–13, 2021, doi: 10.36655/sepren.v2i2.606.

S. Nurlaela, A. Primajaya, and T. N. Padilah, “Algoritma K-Medoids Untuk Clustering Penyakit Maag Di Kabupaten Karawang,” I N F O R M a T I K a, vol. 12, no. 2, p. 56, 2020, doi: 10.36723/juri.v12i2.234.




DOI: https://doi.org/10.30645/brahmana.v5i1.271

DOI (PDF): https://doi.org/10.30645/brahmana.v5i1.271.g268

Refbacks

  • There are currently no refbacks.


Published Papers Indexed/Abstracted By: