Metode K-Nearest Neighbor Dan Naive Bayes Dalam Menentukan Status Gizi Balita

Junius Pratama(1), F Fauziah(2*), Ira Diana Sholihati(3),

(1) Universitas Nasional, Jakarta, Indonesia
(2) Universitas Nasional, Jakarta, Indonesia
(3) Universitas Nasional, Jakarta, Indonesia
(*) Corresponding Author

Abstract


The nutritional intake needed by toddlers during the growth period for each individual has a different amount of consumption, therefore a process of checking nutritional status must be carried out. The indicators high and weight that will be calculated in determining the nutritional status. Until now the process of it status children under five is still carried out manually, resulting in the classification process of nutritional not being as expected. It is difficult for parents to go to the health center to check on their child's condition because the location is far from where they live and the administrative process is long. The propose is website-based information system, as well as providing recommendations on which method is the most accurate among K-Nearest Neighbors and Naïve Bayes in determining the nutritional status of toddlers. The results of this study have succeeded in creating an information system that can be used by users by inputting condition criteria for the process of classifying the nutritional status of toddlers. Naïve Bayes method is superior with a percentage value of 87.5% while the K-Nearest Neighbor method with k = 3 has an accuracy percentage of 71.25%

Full Text:

PDF

References


A. Sholikah, R. Rustiana, A. Y. Prodi, K. Masyarakat, and I. Artikel, “Faktor-Faktor yang Berhubungan dengan Status Gizi Balita di Pedesaan dan Perkotaan,” 2017. [Online]. Available: http://journal.unnes.ac.id/sju/index.php/phpj

Kemenkes, “Hasil Studi Kasus Gizi Indonesia (SSGI)”,2021.[Online].Availaible: http://www.badankebijakan.kemkes.go.id/buku-saku-hasil-studi-status-gizi-indonesia-ssgi-tahun-2021/

M. Devi, “Analisis Faktor-Faktor Yang Berpengaruh Terhadap Status Gizi Balita Di Pedesaan,” 2010. [Online]. Available: http://www.

A. Jurnal et al., “Perbandingan Metode K-Nearest Neighbors dan Naïve Bayes Classifier Pada Klasifikasi Status Gizi Balita di Puskesmas Muara Jawa Kota Samarinda,” Adopsi Teknologi dan Sistem Informasi (ATASI), vol. 1, 2022, doi: 10.30872/atasi.v1i1.25.

[5] B. Yulia, L. Fahik, B. S. Djahi, N. D. Rumlaklak, and J. I. Komputer, “Data Mining Untuk Klasifikasi Status Gizi Desa Di Kabupaten Malaka Menggunakan Metode K-Nearest Neighbor,” J-ICON, vol. 6, no. 1, pp. 1–7, 2018.

N. Epriliana, A. Putri, D. Syauqy, and M. H. Hanafi, “Sistem Klasifikasi Status Gizi Bayi dengan Metode K-Nearest Neighbor Berbasis Sistem Embedded,” 2017. [Online]. Available: http://j-ptiik.ub.ac.id

M. Y. Titimeidara dan W. Hadikurniawati, “Monica Yoshe Titimeidara Implementasi Metode Naive Bayes Implementasi Metode Naive Bayes Classifier Untuk Klasifikasi Status Gizi Stunting Pada Balita.”

D. Simanjuntak dan A. Sindar, “Sistem Pakar Deteksi Gizi Buruk Balita Dengan Metode Naïve Bayes Classifier,” Online, 2019.




DOI: https://doi.org/10.30645/brahmana.v4i2.197

DOI (PDF): https://doi.org/10.30645/brahmana.v4i2.197.g196

Refbacks

  • There are currently no refbacks.


Published Papers Indexed/Abstracted By: