Analisis Perbandingan Fungsi Aktivasi CNN Pada Pengelompokan Jenis Beras Berdasarkan Mutu Beras

Muhammad Rais Wathani(1*), Nur Hidayati(2),

(1) Universitas Islam Kalimantan Muhammad Arsyad Al Banjari, Indonesia
(2) Universitas Bina Sarana Informatika, Indonesia
(*) Corresponding Author

Abstract


This article discusses the comparative analysis of activation functions in Convolutional Neural Network (CNN) for clustering rice types based on rice quality. Two activation functions tested are LogSoftmax and Softmax. Through data collection and CNN architecture implementation, we trained and evaluated the models using evaluation metrics such as accuracy, precision, recall, and F1 score. The results show significant differences in model performance based on the activation function used. These findings provide practical guidance for the food industry in selecting the optimal activation function for clustering rice types. The test results also indicate that the highest accuracy of 0.9787 or 97.87% was achieved with the LogSoftmax activation function architecture model, with the highest precision, recall, and F1 score. On the other hand, the Softmax activation function achieved an accuracy of 0.9286 or 92.86%.

Full Text:

PDF

References


B. Gunawan, M. E. Al-Rivan, P. S. Informatika, U. Multi, And D. Palembang, “2nd Mdp Student Conference (Msc) 2023 E-Issn: 2985-7406 Klasifikasi Jenis Beras Putih Menggunakan Cnn Residual Network Optimizer Sgd,” Pp. 128–132, 2023.

S. S. A. Laros, D. B. M. Dickerscheid, S. P. Blazis, And J. A. Van Der Heide, “Machine Learning Classification Of Mediastinal Lymph Node Metastasis In Nsclc: A Multicentre Study In A Western European Patient Population,” Ejnmmi Phys., Vol. 9, No. 1, 2022, Doi: 10.1186/S40658-022-00494-8.

N. H. Son And N. Thai-Nghe, “Deep Learning For Rice Quality Classification,” 2019 Int. Conf. Adv. Comput. Appl., Pp. 92–96, 2019, Doi: 10.1109/Acomp.2019.00021.

M. Koklu, I. Cinar, And Y. S. Taspinar, “Classification Of Rice Varieties With Deep Learning Methods,” Comput. Electron. Agric., Vol. 187, No. June, P. 106285, 2021, Doi: 10.1016/J.Compag.2021.106285.

F. H. Hawari, F. Fadillah, M. R. Alviandi, And T. Arifin, “Klasifikasi Penyakit Padi Menggunakan Algoritma Cnn ( Convolutional Neural Network ),” Vol. 4, No. 2, Pp. 184–189, 2022.

Muh Zainal Altim, Faisal, Salmiah, Kasman, Andi Yudhistira, And Rita Amalia Syamsu, “Pengklasifikasi Beras Menggunakan Metode Cnn (Convolutional Neural Network),” J. Instek (Informatika Sains Dan Teknol., Vol. 7, No. 1, Pp. 151–155, 2022, Doi: 10.24252/Instek.V7i1.28922.

H. Wang Et Al., “Comparison Of Machine Learning Methods For Classifying Mediastinal Lymph Node Metastasis Of Non-Small Cell Lung Cancer From 18f-Fdg Pet/Ct Images,” Ejnmmi Res., Vol. 7, No. 1, 2017, Doi: 10.1186/S13550-017-0260-9.

L. Gaur, U. Bhatia, N. Z. Jhanjhi, G. Muhammad, And M. Masud, “Medical Image-Based Detection Of Covid-19 Using Deep Convolution Neural Networks,” Multimed. Syst., No. 0123456789, 2021, Doi: 10.1007/S00530-021-00794-6.

L. Yu Et Al., “Prediction Of Pathologic Stage In Non-Small Cell Lung Cancer Using Machine Learning Algorithm Based On Ct Image Feature Analysis,” Bmc Cancer, Vol. 19, No. 1, Pp. 1–12, 2019, Doi: 10.1186/S12885-019-5646-9.

N. Irtiza Trinto And M. Eunus Ali, “Detecting Multilabel Sentiment And Emotions From Bangla Youtube Comments,” 2018 Int. Conf. Bangla Speech Lang. Process. Icbslp 2018, No. January 2019, 2018, Doi: 10.1109/Icbslp.2018.8554875.

S. Kiziloluk And E. Sert, “Covid-Ccd-Net: Covid-19 And Colon Cancer Diagnosis System With Optimized Cnn Hyperparameters Using Gradient-Based Optimizer,” Med. Biol. Eng. Comput., Vol. 60, No. 6, Pp. 1595–1612, 2022, Doi: 10.1007/S11517-022-02553-9.

H. Kör, H. Erbay, And A. H. Yurttakal, “Diagnosing And Differentiating Viral Pneumonia And Covid-19 Using X-Ray Images,” Multimed. Tools Appl., Vol. 81, No. 27, Pp. 39041–39057, 2022, Doi: 10.1007/S11042-022-13071-Z.

R. Kumar Et Al., “Classification Of Covid-19 From Chest X-Ray Images Using Deep Features And Correlation Coefficient,” Multimed. Tools Appl., Vol. 81, No. 19, Pp. 27631–27655, 2022, Doi: 10.1007/S11042-022-12500-3.

N. Hasan, Y. Bao, A. Shawon, And Y. Huang, “Densenet Convolutional Neural Networks Application For Predicting Covid-19 Using Ct Image,” Sn Comput. Sci., Vol. 2, No. 5, Pp. 1–11, 2021, Doi: 10.1007/S42979-021-00782-7.

B. Xu, D. Martín, M. Khishe, And R. Boostani, “Covid-19 Diagnosis Using Chest Ct Scans And Deep Convolutional Neural Networks Evolved By Ip-Based Sine-Cosine Algorithm,” Med. Biol. Eng. Comput., Vol. 60, No. 10, Pp. 2931–2949, 2022, Doi: 10.1007/S11517-022-02637-6.

A. Abbas, J. P. Vantassel, B. R. Cox, K. Kumar, And J. Crocker, “A Frequency-Velocity Cnn For Developing Near-Surface 2d Vs Images From Linear-Array, Active-Source Wavefield Measurements,” Comput. Geotech., Vol. 156, No. February, P. 105305, 2023, Doi: 10.1016/J.Compgeo.2023.105305.

T. Yuan, W. Liu, J. Han, And F. Lombardi, “High Performance Cnn Accelerators Based On Hardware And Algorithm Co-Optimization,” Ieee Trans. Circuits Syst. I Regul. Pap., Vol. 68, No. 1, Pp. 250–263, 2021, Doi: 10.1109/Tcsi.2020.3030663.

A. Nouriani, R. Mcgovern, And R. Rajamani, “Intelligent Systems With Applications Activity Recognition Using A Combination Of High Gain Observer And Deep Learning Computer Vision Algorithms,” Intell. Syst. With Appl., Vol. 18, No. March, P. 200213, 2023, Doi: 10.1016/J.Iswa.2023.200213.

S. Sowmya And D. Jose, “Contemplate On Ecg Signals And Classification Of Arrhythmia Signals Using Cnn-Lstm Deep Learning Model,” Meas. Sensors, Vol. 24, No. October, P. 100558, 2022, Doi: 10.1016/J.Measen.2022.100558.

V. Choudhary, P. Guha, G. Pau, R. K. Dhanaraj, And S. Mishra, “Automatic Classification Of Cowpea Leaves Using Deep Convolutional Neural Network,” Smart Agric. Technol., P. 100209, 2023, Doi: 10.1016/J.Atech.2023.100209.

W. N. Ismail, H. A. Alsalamah, M. M. Hassan, And E. Mohamed, “Auto-Har: An Adaptive Human Activity Recognition Framework Using An Automated Cnn Architecture Design,” Heliyon, Vol. 9, No. 2, P. E13636, 2023, Doi: 10.1016/J.Heliyon.2023.E13636.




DOI: https://doi.org/10.30645/brahmana.v4i2.189

DOI (PDF): https://doi.org/10.30645/brahmana.v4i2.189.g188

Refbacks

  • There are currently no refbacks.


Published Papers Indexed/Abstracted By: