Perbandingan Algoritma Adaline Berdasarkan Pola Input Data Dan Aktivasi Output Untuk Prediksi Data

Donni Nasution(1*), Darmeli Nasution(2), S Solikhun(3),

(1) Universitas Prima Indonesia, Medan, Indonesia
(2) Universitas Pembangunan Panca Budi, Medan, Indonesia
(3) STIKOM Tunas Bangsa, Pematang Siantar, Indonesia
(*) Corresponding Author

Abstract


Adaline is a single-layer supervised learning algorithm where the input layer is directly related to the output layer. Adaline learning uses the delta rule, which adjusts the weights to reduce the difference between network inputs to the desired output and output units. The main problem of this study is to find an alternative to the Adaline algorithm for predicting stroke with seven symptom attributes. This study seeks the best Adaline algorithm performance by comparing four forms of input and output activation patterns. The test results show the results of the same accuracy that is equal to 100%; the same epoch, namely one epoch, and the average weight change is different. The Adaline algorithm can predict stroke well with 100% accuracy.

Full Text:

PDF

References


P. Pola and H. Dengan, “Jurnal Mnemonic Menggunakan Algoritma Adaline Bety | Trismayanti,” vol. 2, no. 1, pp. 12–16, 2019.

U. Nahdlatul, U. Sunan, U. Nahdlatul, and U. Sunan,” vol. 2, no. 1, pp. 13–18, 2019.

I. Habiballah, “Power quality event detection using.”

M. Joorabian, S. S. Mortazavi, and A. A. Khayyami, “Author ’ s personal copy Harmonic estimation in a power system using a novel hybrid Least Squares-Adaline algorithm.”

S. Janpong, K. Areerak, and K. Areerak, “Harmonic detection for shunt active power filter using adaline neural network,” Energies, vol. 14, no. 14, 2021.

H. Sediki et al., “ADALINE approach for induction motor mechanical parameters identification To cite this version : HAL Id : hal-00985414 ADALINE approach for induction motor mechanical parameters identification,” 2014.

Y. Han, L. Xu, M. M. Khan, C. Chen, G. Yao, and L. D. Zhou, “Robust deadbeat control scheme for a hybrid APF with resetting filter and ADALINE-based harmonic estimation algorithm,” IEEE Trans. Ind. Electron., vol. 58, no. 9, pp. 3893–3904, 2011.

D. Erdogmus and J. C. Principe, “Convergence properties and data efficiency of the minimum error entropy criterion in adaline training,” IEEE Trans. Signal Process., vol. 51, no. 7, pp. 1966–1978, 2003.

W. Zhang, “System identification based on an improved generalized ADALINE neural network,” Proc. 2011 Chinese Control Decis. Conf. CCDC 2011, vol. 11, no. 1, pp. 789–794, 2011.

D. Halbwachs, P. Wira, and J. Mercklé, “Adaline-based approaches for time-varying frequency estimation in power systems,” IFAC Proc. Vol., vol. 2, no. PART 1, 2009.

S. Benhalima, A. Chandra, and M. Rezkallah, “Real-time experimental implementation of an LMS-adaline-based ANFIS controller to drive PV interfacing power system,” IET Renew. Power Gener., vol. 13, no. 7, pp. 1142–1152, 2019.

P. Garanayak, R. T. Naayagi, and G. Panda, “A High-Speed Master-Slave ADALINE for Accurate Power System Harmonic and Inter-Harmonic Estimation,” IEEE Access, vol. 8, pp. 51918–51932, 2020.

L. Wang, G. Tan, and J. Meng, “Research on model predictive control of IPMSM based on adaline neural network parameter identification,” Energies, vol. 12, no. 24, 2019.

A. Kumar and P. Kumar, “Power Quality Improvement for Grid-connected PV System Based on Distribution Static Compensator with Fuzzy Logic Controller and UVT/ADALINE-based Least Mean Square Controller,” J. Mod. Power Syst. Clean Energy, vol. 9, no. 6, pp. 1289–1299, 2021.

G. S. Chawda and A. G. Shaik, “Performance Evaluation of Adaline Controlled Dstatcom for Multifarious Load in Weak AC Grid,” 2019 IEEE PES GTD Gd. Int. Conf. Expo. Asia, GTD Asia 2019, no. January 2020, pp. 356–361, 2019.

A. Xue et al., “A New Robust Identification Method for Transmission Line Parameters Based on ADALINE and IGG Method,” IEEE Access, vol. 8, pp. 132960–132969, 2020.

M. Gullu and I. Yilmaz, “Outlier detection for geodetic nets using ADALINE learning algorithm,” Sci. Res. Essays, vol. 5, no. 5, pp. 440–447, 2010.

K. Reddy and T. Reddy, “LJMU Research Online,” 2020.




DOI: https://doi.org/10.30645/brahmana.v4i1.139

DOI (PDF): https://doi.org/10.30645/brahmana.v4i1.139.g138

Refbacks

  • There are currently no refbacks.


Published Papers Indexed/Abstracted By: